Skip to content
\[ \newcommand{E}{\mathbf E} \newcommand{v}{\mathbf v} \]
Our Goal Today

In the context of non-i.i.d auction (to be specific, non-identical, but still independent), is there still some

Are there simpler, more practical, more robust auctions that we can prove that are near-optimal?

An Open Question

How to define one auction is simpler than the other? Although we shall see many cases where one auction is definitely simpler than the other, but how to quantize it?

Prophet Inequality

Abstract

Prophet Inequality 的意思就是:假如有一个全知的 prophet, 我们也有一种策略,使得我们的收益可以达到 prophet 的至少 1/2。

Theorem 2.1 (Prophet Inequality) For every sequence \(G_1, \dots, G_n\) of independent distributions, there is strategy that guarantees expected reward \(\frac 1 2 \E_\pi[\max_i \pi_i ]\). In fact, there is such a very simple threshold strategy \(t\), which accepts prize \(i\) if and only if \(\pi_i \geq t\).

Proof:

\(q(t) = \Pr[\forall i: \pi_i < t]\)

\[ \begin{aligned} &\E[\text{payoff of t-threshold strategy}] \newline =& (1-q(t)) * t + \sum_{i=1}^n \E[\pi_i - t | \forall j < i: \pi_j < t, \pi_i \geq t] * \Pr[\forall j < i: \pi_j < t, \pi_i \geq t] \newline =& (1-q(t)) * t + \sum_{i=1}^n \E[\pi_i - t | \pi_i \geq t] * \Pr[\forall j < i: \pi_j < t] * \Pr[\pi_i \geq t] \newline \geq& (1-q(t)) * t + \sum_{i=1}^n \E[\pi_i - t | \pi_i \geq t] * q(t) * \Pr[\pi_i \geq t] \newline =& (1-q(t)) * t + q(t) \sum_{i=1}^n \E[(\pi_i - t)^+] \quad \text{where} (\pi_i - t)^+ \text{ means } \min(\pi_i - t, 0) \newline \end{aligned} \]

又由于:

\[ \begin{aligned} \E[\max_i \pi_i] &= \E[t + \max_i (\pi_i - t)] \newline &\leq t + \E[\max_i(\pi_i - t)^+] \newline &\leq t + \sum_{i=1}^n \E[(\pi_i - t)^+] \end{aligned} \]

因此:\(\E[\text{payoff of t-threshold strategy}] \geq (1-q(t))t + q(t)(\E[\max_i \pi_i]-t)\)。令 \(t\in q^{-1}(1/2)\),显然 \(\E[\text{payoff of t-threshold strategy}] \geq \E[\max_i \pi_i] / 2\)\(\blacksquare\)

Further Notes

首先,这个 1/2 bound 是紧的。

其次,我们还可以得出更强的结论:如果不是取 the first value that is above the threshold,而是取 the worst value (among all values) that are above the threshold,也是 1/2 的 bound。

  • 具体来说,证明的时候,只需要把第二行改成 \((1-q(t)) * t + \sum_{i=1}^n \E[\pi_i - t | \forall j \neq i: \pi_j < t, \pi_i \geq t] * \Pr[\forall j \neq i: \pi_j < t, \pi_i \geq t]\)(也就是用 \(j \neq i\) 代替 \(j < i\)),即可

Example: Single-Item Auction

对于 single-item auction 而言,由于 \(\E_\v[\sum_{i=1}^n p_i(\v)] = \E_\v[\sum_{i=1}^n \varphi_i(\v) x_i(\v)]\),因此我们所需要的,就是最大化右侧:\(\max_x \E_\v[\sum_{i=1}^n \varphi_i(\v) x_i(\v)] = \E_\v[\max_i (\varphi_i(\v))^+]\)

而我们的简化版策略就是:选取一个适当的 \(t\),然后只将物品分配给 \(i, s.t. \varphi_i(v_i) > t\)。至于分配策略,随便任意的分配策略都可以。

  • 因为上面的 further note 说到:即使是 worst value,也是 1/2 bound。因此任意分配策略必然不差于 worst value,从而 bound 也是 1/2。
Still an Issue

仍然有一个问题:以 eBay 为例,不同的买家有着不同的 distribution,但是你的 \(t\) (i.e. reserve price) 不能因为买家的不同而变动——你只能固定一个 reserve price,然后有一些人会来买,有些人不来。

An interesting open research question is to understand how well the Vickrey auction with an anonymous reserve price (i.e., eBay) can approximate the optimal expected revenue in a single-item auction when bidders valuations are drawn from non-i.i.d. regular distributions.

Partial results are known: there is such an auction that recovers at least 25% of the optimal revenue, and no such auction always recovers more than 50% of the optimal revenue.

Case Study: Reserve Prices in Yahoo! Keyword Auctions

理论依据

假设所有 bidder 均为 i.i.d. subject to \(F\), where \(F\) is a regular distribution,那么,利润最优的策略就是:rank bidders by bid (from the best slot to the worst) after applying the monopoly reserve price \(\varphi^{-1}(0)\) to all bidders, where \(\varphi\) is the virtual valuation function of \(F\).

计算过程

首先,如何求出每个关键字的 \(\varphi_{keyword}^{-1}(0)\)?Yahoo 采用了对数正态分布来对 \(F_{keyword}\) 进行建模(this is somewhat ad hoc, but really doesn't matter)。通过统计历史上的出价信息,求出该分布的 \(\mu, \sigma\)。从而得到 \(\varphi_{keyword}\),从而可以反求 \(\varphi_{keyword}^{-1}(0)\)

实际的统计

由于 Yahoo! 使用的是 Generalized Second Price auction,因此

结论

通过理论计算,可以发现之前的 reserve price 过低($0.1 左右,而理论上的 optimal reserve price 是 $0.3 ~ $0.4)。

提高 reserve price 之后,keywords with thin market 的利润有明显的上升。这是因为对于竞争激烈的市场,往往 reserve price 起不到作用(因为很大概率,会有至少两个 bids 的价格大于等于 reserve price),而 thin market 可以起到很好的作用。

Prior-Independent Auctions

Abstract

有时候我们面对的市场是 thin market——没有什么统计数据,因此完全无法利用先验知识。

我们不妨退回到最基础的 single-item auction with i.i.d. \(v_i\)。在这个条件下,我们可以得到一个很经典 yet 很 fancy 的结论。

Theorem 4.1 (Bulow-Klemperer Theorem) Suppose all \(v_i\)'s are i.i.d.'s. Let \(F\) be a regular distribution and \(n\) a positive integer. If we only consider those DSIC mechanisms, then:

\[ \E_{v_1,\dots, v_{n+1} \sim F} [Rev(\mathrm {VA}) (n + 1 \text{ bidders})] ≥ \E_{v_1,\dots, v_{n+1} \sim F} [Rev(\mathrm{OPT}_F ) (n \text{ bidders})] \]

Proof: 我们引入第三个 \(n+1\)-bidder auction 作为 auxiliary auction。只需要证明 LHS auxiliary auction, RHS 不优于 auxiliary auction, 就可以。

Auxiliary auction 是:

  1. 我们首先在前 \(n\) 个 bidder 上进行 optimal auction
  2. 如果物品没有被分配,就将物品免费给第 \(n+1\) 个 bidder

易证: RHS 不优于 auxiliary auction。

  • 实际上,RHS 和这个 auction 的 revenue 是相同的

Info

Lemma 1 Vickrey auction 是所有必须分配物品的 mechanism 中 revenue 最高的

Proof: 给定任何一个 mechanism,如果 mechanism 满足 DSIC,那么必然满足 \(\E_\v[\sum_{i=1}^n p_i(\v)] = \E_\v[\sum_{i=1}^n \varphi_i(\v) x_i(\v)]\)。从而:如果 \(\vec x(\mathbf v) \neq \mathbf 0\)(i.e. 必须拍卖出去),那么策略就是每一次都分配给最大的 \(\varphi_i(\mathbf v)\)

由于 \(F\) is regular distribution, by definition \(\varphi_i(\mathbf v)\) is monotone。因此,最优策略就是 give the good to the highest bidder,DSIC 下对应的 mechanism 就是 Vickrey auction\(\blacksquare\)

由于 auxiliary auction 一定会将物品分配给某个人,因此,Vickrey auction (LHS) 必然不差于 auxiliary auction。\(\blacksquare\)